PDSF NERSC's Production Linux Cluster Craig E. Tull HCG/NERSC/LBNL MRC Workshop LBNL - March 26, 2002 #### **Outline** - People: Shane Canon (Lead), Cary Whitney, Tom Langley, Iwona Sakredja (Support) (Tom Davis, Tina Declerk, John Milford, others) - Present - —What is PDSF? - —Scale, HW & SW Architecture, Business & Service Models, Science Projects - Past - —Where did PDSF come from? - —Origins, Design, Funding Agreement - Future - —How does PDSF relate to the MRC initiative? #### **PDSF - Production Cluster** - PDSF Parallel Distributed Systems Facility - —HENP community - Specialized needs/Specialized requirements - Our mission is to provide the most effective distributed computer cluster possible that is suitable for experimental HENP applications. - Architecture tuned for "embarrassingly parallel" applications - AFS access, and access to HPSS for mass storage - High speed (Gigabit Ethernet) access to HPSS system and to Internet Gateway - http://pdsf.nersc.gov/ ### **PDSF Photo** #### **PDSF Overview** ## Component HW Architecture - By minimizing diversity within the system, we maximize uptime and minimize sys-admin overhead. - Buying Computers by the Slice (Plant & Prune) - —Buy large, homogeneous batches of HW. - —Each large purchase of HW can be managed as a "single unit" composed of interchangable parts. - —Each slice has limited lifespan NO MAINT. \$ - Critical vs. non-Critical Resources - —Non-critical compute nodes can fail without stopping analysis. - —Critical data vaults can be trivially interchanged (with transfer of disks) with compute nodes. - Uniform environment means that software & security problems can be solved by "Reformat & Reload". ## ERSC HW Arch.: 4 types of Nodes - Interactive - —8 Intel Linux (RedHat 6.2) - —More memory, Fast, interactive logon, serve batch jobs when idle - Batch (Normal & High Bandwidth) - -~400 Intel Linux CPUs (RedHat 6.2) - -LSF: Short, Medium, Long, & Custom Queues - Data Vault - —Large Shared (NFS) Disk Arrays 25 TB - —High Network (GigE) Connectivity to compute nodes & HPSS, Data-Transfer Jobs Only - Administrative - —Home diskspace server, AFS servers, License servers, Database servers, time servers, etc. #### **PDSF Global SW** - All SW necessary to HENP data analysis & simulation is available and maintained at current revs - Solaris Software - —AFS, CERN libs, CVS, Modules, Objectivity, Omnibroker, Orbix, HPSS pFTP, ssh, LSF, PVM, Framereader, Sun Workshop Suite, Sun's Java Dev. Toolkit, Veritas, Python, etc. - Linux Software - —AFS, CERN libs, CVS, Modules, Omnibroker, ssh, egcs, KAI C++, Portland Group F77/F90/HPF/C/C++, LSF, HPSS pFTP, Objectivity, ROOT, Python, etc. - Specialized Software (Experiment Maintained) - —ATLAS, CDF, D0, DPSS, E895, STAR, etc. ## **Experiment/Project SW** - Principal: Allow diverse groups/projects to operate on all nodes without interfering with others. - Modules: - —Allows individuals/groups to chose appropriate SW versions at login (Version migration dictated by experiment, not system.). - Site independence: - —PDSF personnel have been very active in helping "portify" code (STAR, ATLAS, CDF, ALICE). - Direct benefit to project Regional Centers & institutions. - Specific kernel/libc dependency of project SW is only case where interference is an issue (None now.). - LSF extensible to allow incompatible differences. ## **Batch Queuing System** - LSF 4.x Load Sharing Facility - —Solaris & Linux - —Tremendous leverage from NERSC (158 "free", aggressive license negotiations ▷ price savings) - Very good user & admin experiences - —Fair share policy in use - —Can easily sustain >95% load. #### **Administrative SW/Tools** - Monitoring tools Batch usage, node & disk health, etc. - —developed at PDSF to insure smooth operation & assure contributing clients - HW tracking & location (mySQL + ZOPE) - -800 drives, ~300 boxes, HW failures/repairs, etc. - —developed at PDSF out of absolute necessity - System & Package consistency - —developed at PDSF - System installation - —kickstart ~3 min.s/node - System Security No Known Security Breaches - —TCP Wrappers & ipchains, NERSC Monitoring, no clear-text passwords, security patches, crack, etc. #### **PDSF Business Model** - Users contribute directly to cluster through hardware purchases. The size of the contribution determines the fraction of resources that are guaranteed. - NERSC provides facilities and administrative resources (up to pre-agreed limit). - User share of resource guaranteed at 100% for 2 years (warranty), then depreciates 25% per year (hardware lifespan). - PDSF scale has reached the point where some FTE resources must be funded. - -#Admins Ü Size of System (eg. box count) - —#Support Ü Size of User Community (eg. #groups & #users & diversity) #### **PDSF Service Model** - Less than 24/7, but more than Best Effort. - Support (1 FTE): - —USG supported web-based trouble tickets. - —Response during business hours. - —Performance matrix. - —Huge load right now Ü Active, Large community - Admin (3 FTE): - —NERSC operations monitoring (24/7) - —Critical vs. non-critical resources - —Non-critical: (eg. batch nodes) Best effort - —Critical: (eg. servers, DVs) Fastest response ## **History of PDSF Hardware** - Arrived from SSC (RIP), May 1997 - October '97 "Free" HW from SSC - 32 SUN Sparc 10, 32 HP 735 - 2 SGI data vaults - 1998 NERSC seeding & initial NSD updates - added 12 Intel (E895), SUN E450, 8 dual-cpu Intel (NSD/STAR), 16 Intel (NERSC), 500 GB network disk (NERSC) - subtracted SUN, HP, 160 GB SGI data vaults - 1999 Present Full Plant & Prune - HENP Contributions: STAR, E871, SNO, ATLAS, CDF, E891, others - March 2002 - 240 Intel Compute Nodes (390 CPUs) - 8 Intel Interactive Nodes (dual 996MHz PIII, 2GB RAM, 55GB scratch) - 49 Data Vaults: 25 TB of shared disk - Totals: 570K MIPS, 35 TB disk #### **PDSF Growth** - Future - —Continued support of STAR & HENP - —Continue to seek out new groups - —Look for interest outside of HENP community - Primarily Serial workloads - Stress benefits of using a shared resource - Let scientist focus on science and system administrator run computer systems ## **PDSF Major/Active Users** - Collider Facilities - —STAR/RHIC Largest user - -CDF/FNAL - -ATLAS/CERN - **—E871/FNAL** - Neutrino Experiments - —Sudbury Neutrino Observatory (SNO) - **—KamLAND** - Astrophysics - —Deep Search - —Super Nova Factory - —Large Scale Structure - **—AMANDA** ## Solenoidal Tracking At RHIC (STAR) - Experiment at the RHIC accelerator in BNL - Over 400 scientists and engineers from 33 institutions in 7 countries - PDSF primarily intended to handle simulation workload - PDSF has increasingly been used for general analysis # Sudbury Neutrino Observatory (SNO) - Located in a mine in Ontario Canada - Heavy water neutrino detector - SNO has over 100 collaborators at 11 institutions #### **Results from SNO** - Recently confirmed results from Super-K that neutrinos have mass. - PDSF specifically mentioned in results Measurement of the rate of $\nu_e + d \rightarrow p + p + e^-$ interactions produced by ⁸B solar neutrinos at the Sudbury Neutrino Observatory Q.R. Ahmad¹⁵, R.C. Allen¹¹, T.C. Andersen¹², J.D. Anglin⁷, G. Bühler¹¹, J.C. Barton^{13‡}, E.W. Beier¹⁴, M. Bercovitch⁷, J. Bigu⁴, S. Biller¹³, R.A. Black¹³, I. Blevis³, R.J. Boardman¹³, J. Boger², E. Bonvin⁹, M.G. Boulay⁹, M.G. Bowler¹³, T.J. Bowles⁶, S.J. Brice^{6,13}, M.C. Browne¹⁵, T.V. Bullard¹⁵, T.H. Burritt^{15,6} K. Cameron¹², J. Cameron¹³, Y.D. Chan⁵, M. Chen⁹, H.H. Chen^{11*}, X. Chen^{5,13}, M.C. Chon¹², B.T. Cleveland¹³, E.T.H. Clifford^{9,1}, J.H.M. Cowan⁴, D.F. Cowen¹⁴, G.A. Cox¹⁵, Y. Dai⁹, X. Dai¹³, F. Dalnoki-Veress³, W.F. Davidson⁷, P.J. Doe^{15,11,6}, G. Doucas¹³, M.R. Dragowsky^{6,5}, C.A. Duba¹⁵, F.A. Duncan⁹, J. Dunmore¹³, E.D. Earle^{9,1}, S.R. Elliott^{15,6}, H.C. Evans⁹, G.T. Ewan⁹, J. Farine³, H. Fergani¹³, A.P. Ferraris¹³, R.J. Ford⁹, M.M. Fowler⁶, K. Frame¹³, E.D. Frank¹⁴, W. Frati¹⁴, J.V. Germani^{15,6}, S. Gil¹⁰, A. Goldschmidt⁶, D.R. Grant³. R.L. Hahn², A.L. Hallin⁹, E.D. Hallman⁴, A. Hamer^{6,9}, A.A. Hamian¹⁵, R.U. Haq⁴, C.K. Hargrove³, P.J. Harvey⁹, R. Hazama¹⁵, R. Heaton⁹, K.M. Heeger¹⁵, W.J. Heintzelman¹⁴, J. Heise¹⁰, R.L. Helmer^{10†}, J.D. Hepburn^{9,1}, H. Heron¹³, J. Hewett⁴, A. Hime⁶, M. Howe¹⁵, J.G. Hykawy⁴, M.C.P. Isaac⁵, P. Jagam¹², N.A. Jelley¹³, C. Jillings⁹, G. Jonkmans^{4,1}, J. Karn¹², P.T. Keener¹⁴, K. Kirch⁶, J.R. Klein¹⁴, A.B. Knox¹³, R.J. Komar^{10,9}, R. Kouzes⁸, T. Kutter¹⁰, C.C.M. Kyba¹⁴, J. Law¹², I.T. Lawson¹², M. Lay¹³, H.W. Lee⁹, K.T. Lesko⁵, J.R. Leslie⁹, I. Levine³, W. Locke¹³, M.M. Lowry⁸, S. Luoma⁴, J. Lyon¹³, S. Majerus¹³, H.B. Mak⁹, A.D. Marino⁵, N. McCauley¹³, A.B. McDonald^{9,8}, D.S. McDonald¹⁴, K. McFarlane³, G. McGregor¹³, W. McLatchie⁹, R. Meijer Drees¹⁵, H. Mes³, C. Mifflin³, G.G. Miller⁶, G. Milton¹, B.A. Moffat⁹, M. Moorhead^{13,5}, C.W. Nally¹⁰, M.S. Neubauer¹⁴, ## **PDSF Job Matching** - Linux clusters are already playing a large role in HENP and Physics simulations and analysis. - Beowulf systems may be in-expensive, but can require lots of time to administer - Serial Jobs: - —Perfect match (up to ~2GB RAM+2GB SWAP) - MPI Jobs: - —Some projects using MPI (Large Scale Structures, Deep Search). - —Not low latency, small messages - "Real" MPP (eg. Myricom) - —Not currently possible. Could be done, but entails significant investment of time & money. - —LSF handles MPP jobs (already configured). ## ow does PDSF relate to MRC? - Emulation or Expansion ("Model vs. Real Machine") - —If job characteristics & resources match. - Emulation: - —Adopt appropriate elements of HW & SW Arch.s, **Business & Service Models.** - —Steal appropriate tools. - —Customize to eg. non-PDSF like job load. - Expansion: - —Directly contribute to PDSF resource. - —Pros: - Faster ramp-up, stable environment, try before bye, larger pool of resources (better utilization), leverage existing expertise/infrastructure - –Cons: - Not currently MPP tuned, ownership issues.